

ANALYTIC FUNCTION I

일 자 2001년 10월

작성자 전철진

2001-10-25

Creator: Chun,Cholchin 1

1. Intro

2001년 초에 있다는 것만 알다가 여름에 교보에서 구입한 Tom Kyte의 책을 차일피일 미루며 보다가

오라클사에서 인터넷에 공개한 8.1.6 매뉴얼을 참조해서 몇자 정리를 하였다. Windowing에 대한 설명

은 한 두번 봐서는 이해하기 힘들것이다. 예문과 실지 계산기를 들고 해보길 바란다.

아래의 예문은 scott 으로 접속하여 던진 SQL이다.

다양한 사용에 대한 예는 이후에 시간 내어서 정리해볼 생각이다.

ORACLE DBMS V 8.1.6 이상에 추가된 26개의 함수들로서 아래와 같은 작업요구에 쉬운 접근성을 보여

준다.

a. 누적 합계 계산(calculate a running total)

b. 그룹내에 퍼센트(find percentages within a group)

c. 상위 N 질의(top-n queries)

d. 이동 평균 계산(compute a moving average)

e. 순위 질의 수행(perform ranking queries)

예문 1)

A) ANALYTIC FUNCTION 사용경우

select deptno as “부서” , ename as “성명” , sal as “급여”,

 row_number() over (partition by deptno order by ename) as "부서내 SEQ",

 sum(sal) over (partition by deptno order by ename) as "부서내 SAL 누적합계",

 row_number() over (order by deptno,ename) as "전체 SEQ",

 sum(sal) over (order by deptno,ename) as "전체 SAL 누적합계"

from emp

order by deptno, ename ;

부서 성명 급여L 부서내 SEQ 부서내 SAL 누적합계 전체 SEQ 전체 SAL 누적합계

10 CLARK 2450 1 2450 1 2450

10 KING 5000 2 7450 2 7450

10 MILLER 1300 3 8750 3 8750

20 ADAMS 1100 1 1100 4 9850

20 FORD 3000 2 4100 5 12850

20 JONES 2975 3 7075 6 15825

20 SCOTT 3000 4 10075 7 18825

20 SMITH 800 5 10875 8 19625

30 ALLEN 1600 1 1600 9 21225

30 BLAKE 2850 2 4450 10 24075

2001-10-25

Creator: Chun,Cholchin 2

30 JAMES 950 3 5400 11 25025

30 MARTIN 1250 4 6650 12 26275

30 TURNER 1500 5 8150 13 27775

30 WARD 1250 6 9400 14 29025

B) 전통적인 사용 경우

Select detpno,ename,sal,

(select count(ename) from emp e3

where e3.deptno = e1.deptno and e3.ename <= emp.ename) as “부서내 순서”,

(select sum(sal) from emp e3

where e3.deptno = e1.deptno and e3.ename <= e1.ename)

as “부서별 급여누적합계,

(select sum(sal) from emp e2

where e2.deptno < e1.deptno or (e2.deptno = e1.detpno and e2.ename <= e1.ename))

as “전체 급여 누적합계”

from emp e1

order by deptno, ename;

2. Syntax & Definition

FUNCTION_NAME (<arg1>,<arg2>,<arg3>) OVER

------------- -------------------

 analytic_clause절

(<Partition-절> <order by 절> <windowing 절>)

 --------- --------- -----------

예) sum(sal) over

(partition by deptno

order by ename) as “부서내 누적합계”

FUNCTION_NAME : analytic function 이름

(<arg1>,<arg2>,<arg3>) : analytic function은 0-3개 arguments를 갖는다.

OVER : query 결과 set에 수행되는 함수를 indicate 한다. 즉, from, where, group

by , having 절 뒤에 계산된다.

analytic_clause : select list 절이나 order by 절에 analytic fuction 을 함께 기재할수 있다.

이 절은 결과 query의 filter를 위해 기재된다.

주요특징:

2001-10-25

Creator: Chun,Cholchin 3

1. select 절과 order by 절에만 올수 있다.

2. execution plan 에서 WINDOW SORT로 표시된다.

3. ANAL FUC은 SQL에서 ORDER BY를 제외하곤 제일 마지막에 수행한다. 즉 JOIN, WHERE,

GROUP BY , HAVING 등이 먼저 수행된다.

4 부분으로 나눠서 더 자세히 ANALYTIC FUNCTION을 보고자 합니다.

2_1. Function Clause 뒤 부분에 자세히 언급

2_2. Partition Clause

PARTITION BY : 1개 또는 이상의 VALUE_EXPR을 기반으로 그룹화된 결과query가 partition된다.

 만약 이 절이 생략되면 함수는 하나의 그룹처럼 모든 rows에 대한 결과 query로

 취급한다.

Value_expr : 바른값은 칼럼, 상수, nonanalytic functions, function expressions 등이다.

2_3. Order By Clause

ORDER BY : Partition 내에서 순서화 되는 방식을 기입한다. 여러 개의 순서화 룰을 줄수도 있다.

그것은 각 value_expr에 각 ordering sequence 를 정의하는것으로 가능하다.

주) analytic function은 항상 ORDER BY 절에 기입된 순서대로 모든 ROWS에 작동된다.

제약사항) 이 절에는 expr이여야 한다. position 또는 칼럼 alias 는 안된다.

ASC| DESC : 순서화방식기입 ASC는 default이다.

NULLS FIRST | NULLS LAST : NULL값이 포함된 row의 리턴시 순서상 first냐? Last냐? 를 결정

NULLS LAST는 ASC순서에서는 default이고,

DESC순서에서는 NULLS FIRST가 default이다.

2_4. Windowing Clause

ROWS |RANGE : 함수의 결과를 계산을 위해 사용되는 window(물리적, 논리적 row set)의

각 row를 정의하는 keyword이다. 함수는 이 윈도우의 모든 row에 적용된다.

Partition의 top 부터 bottom 까지 sliding 된다.

ROWS : 물리적 ROW 단위의 WINDOW 지칭

RANGE : 논리적 offset으로 윈도우를 지정한다.

주) Windowing 절을 사용시엔 반드시 order by 를 사용해야 한다.

2001-10-25

Creator: Chun,Cholchin 4

주) logical offset은 함수적용에 의한 리턴되는 값이 항상 결정적이지만 physical offset은 unique

ordering 결과가 아니면 그 값은 비결정적이다. 그래서 order b y절에 다중 칼럼을 넣어서 unique

ordering 을 이루게 한다.

BETWEEN … AND : 윈도우를 위해 시작점과 끝점을 지정한다. 만약 BETWEEN을 생략하고

단지 one end point만 기입한다면 오라클은 그것을 start point로 간주하고

end point를 CURRENT ROW로 간주한다. (DEFAULT로)

UNBOUNDED PRECEDING : Partition의 첫번째 row에서 시작한다고 기입하는것이고, 이것은 start

point로 기입되는것이지 end point로 기입될수 있는 것이 아니다.

UNBOUNDED FOLLOWING : Partition의 마지막 row에서 끝난다고 기입하는 것이고, 이것은 end

 Po i n t 로 기입되는 것이지 start point로 기입될수 있는 것이 아니다.

CURRENT ROW : start point로서, 이것은 윈도우에서 current row or value(ROW냐? ,

RANGE냐?)에서 시작한다는 것을 기입한다.

이때 end point로서 value_expr PRECEDING 은 사용할수 없다.

end point로서, 이것은 윈도우에서 current row or value(ROW냐? ,

RANGE냐?)에서 끝난다는 것을 기입한다.

이때 end point로서 value_expr FOLLOWING 은 사용할수 없다.

Value_expr PRECEDING : Value_expr PRECEDING 가 start point 이라면 end point 에는

 Value_expr FOLLOWING 이어야 한다.

Value_expr FOLLOWING : Value_expr FOLLOWING 가 start point 이라면 end point 에는

 Value_expr PRECEDING 이어야 한다.

만약에 숫자형식의 시간간격에 의해 논리적 윈도우를 정의햇다면

Conversion function 사용이 필요할수도 있다.

(NUMTOYMINTERVAL, NUMTODSINTERVAL)

만약 ROWS 경우

1. Value_expr 가 물리적 OFFSET이다. 양수이어야 한다.

 2. Value_expr 가 start point의 일부이면 end point 전에 row을 평가해야 한다.

만약 RANGE 경우

1. Value_expr 는 논리적 OFFSET이다. 양의수 또는 interval literal 로 평가되는 constant 또는

expression이어야 한다.

2. ORDER BY 절에 단지 1개의 expression 기입할 수 있다.

3. Value_expr 가 숫자값이라면 ORDER BY expr은 NUMBER OR DATE datatype이여야 한다.

2001-10-25

Creator: Chun,Cholchin 5

4. Value_expr 이 interval value이라면 ORDER BY expr은 DATE datatype이여야 한다.

만약 WINDOWING_CLAUSE 전체가 생략된다면,

디폴트는 RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

2_4_1. Range Windows

1. Asc

select ename as "성명", sal as "급여" , hiredate -100 as "입사100일전",

 hiredate as "입사일",

 first_value(ename) over

 (order by hiredate asc range 100 preceding) as "성명_pre",

 first_value(hiredate) over

 (order by hiredate asc range 100 preceding) as "입사일_pre"

from emp

order by hiredate asc;

ENAME SAL 입사100일전 입사일 성명_pre 입사일_pre

SMITH 800 9/8/1980 12/17/1980 SMITH 12/17/1980

ALLEN 1600 11/12/1980 2/20/1981 SMITH 12/17/1980

WARD 1250 11/14/1980 2/22/1981 SMITH 12/17/1980

JONES 2975 12/23/1980 4/2/1981 ALLEN 2/20/1981

BLAKE 2850 1/21/1981 5/1/1981 ALLEN 2/20/1981

CLARK 2450 3/1/1981 6/9/1981 JONES 4/2/1981

TURNER 1500 5/31/1981 9/8/1981 CLARK 6/9/1981

MARTIN 1250 6/20/1981 9/28/1981 TURNER 9/8/1981

KING 5000 8/9/1981 11/17/1981 TURNER 9/8/1981

FORD 3000 8/25/1981 12/3/1981 TURNER 9/8/1981

JAMES 950 8/25/1981 12/3/1981 TURNER 9/8/1981

MILLER 1300 10/15/1981 1/23/1982 KING 11/17/1981

SCOTT 3000 1/9/1987 4/19/1987 SCOTT 4/19/1987

ADAMS 1100 2/12/1987 5/23/1987 SCOTT 4/19/1987

2. Desc

select ename as "성명", sal as "급여" ,hiredate as "입사일",

 hiredate+100 as "입사100일후",

 first_value(ename) over

 (order by hiredate desc range 100 preceding) as "성명_pre",

 first_value(hiredate) over

 (order by hiredate desc range 100 preceding) as "입사일_pre"

2001-10-25

Creator: Chun,Cholchin 6

from emp

order by hiredate desc;

성명 급여 입사일 입사100일후 성명_pre 입사일_pre

ADAMS 1100 5/23/1987 8/31/1987 ADAMS 5/23/1987

SCOTT 3000 4/19/1987 7/28/1987 ADAMS 5/23/1987

MILLER 1300 1/23/1982 5/3/1982 MILLER 1/23/1982

FORD 3000 12/3/1981 3/13/1982 MILLER 1/23/1982

JAMES 950 12/3/1981 3/13/1982 MILLER 1/23/1982

KING 5000 11/17/1981 2/25/1982 MILLER 1/23/1982

MARTIN 1250 9/28/1981 1/6/1982 FORD 12/3/1981

TURNER 1500 9/8/1981 12/17/1981 FORD 12/3/1981

CLARK 2450 6/9/1981 9/17/1981 TURNER 9/8/1981

BLAKE 2850 5/1/1981 8/9/1981 CLARK 6/9/1981

JONES 2975 4/2/1981 7/11/1981 CLARK 6/9/1981

WARD 1250 2/22/1981 6/2/1981 BLAKE 5/1/1981

ALLEN 1600 2/20/1981 5/31/1981 BLAKE 5/1/1981

SMITH 800 12/17/1980 3/27/1981 WARD 2/22/1981

3. SUMMARY

select ename as "성명", sal as "급여" ,hiredate as "입사일",

 avg(sal) over

 (order by hiredate asc range 100 preceding) as " 100일-입사일 평균급여",

 avg(sal) over

 (order by hiredate desc range 100 preceding) as "입사일-100일 평균급여"

from emp

order by hiredate asc;

성명 급여 입사일 100일-입사일 평균급여 입사일-100일 평균급여

SMITH 800 12/17/1980 800 1216.666667

ALLEN 1600 2/20/1981 1200 2168.75

WARD 1250 2/22/1981 1216.666667 2358.333333

JONES 2975 4/2/1981 1941.666667 2758.333333

BLAKE 2850 5/1/1981 2168.75 2650

CLARK 2450 6/9/1981 2758.333333 1975

TURNER 1500 9/8/1981 1975 2340

MARTIN 1250 9/28/1981 1375 2550

2001-10-25

Creator: Chun,Cholchin 7

KING 5000 11/17/1981 2583.333333 2562.5

JAMES 950 12/3/1981 2340 1750

FORD 3000 12/3/1981 2340 1750

MILLER 1300 1/23/1982 2562.5 1300

SCOTT 3000 4/19/1987 3000 2050

ADAMS 1100 5/23/1987 2050 1100

2001-10-25

Creator: Chun,Cholchin 8

2_4_2. Row Windows

1. Asc

select ename as "성명", sal as "급여" , hiredate as "입사일",

 first_value(ename) over

 (order by hiredate asc rows 5 preceding) as "성명_pre",

 first_value(hiredate) over

 (order by hiredate asc rows 5 preceding) as "입사일_pre"

from emp

order by hiredate asc;

성명 급여 입사일 성명_pre 입사일_pre

SMITH 800 12/17/1980 SMITH 12/17/1980

ALLEN 1600 2/20/1981 SMITH 12/17/1980

WARD 1250 2/22/1981 SMITH 12/17/1980

JONES 2975 4/2/1981 SMITH 12/17/1980

BLAKE 2850 5/1/1981 SMITH 12/17/1980

CLARK 2450 6/9/1981 SMITH 12/17/1980

TURNER 1500 9/8/1981 ALLEN 2/20/1981

MARTIN 1250 9/28/1981 WARD 2/22/1981

KING 5000 11/17/1981 JONES 4/2/1981

JAMES 950 12/3/1981 BLAKE 5/1/1981

FORD 3000 12/3/1981 CLARK 6/9/1981

MILLER 1300 1/23/1982 TURNER 9/8/1981

SCOTT 3000 4/19/1987 MARTIN 9/28/1981

ADAMS 1100 5/23/1987 KING 11/17/1981

2. Desc

select ename as "성명", sal as "급여" , hiredate as "입사일",

 first_value(ename) over (order by hiredate desc rows 5 preceding) as "성명_pre",

 first_value(hiredate) over (order by hiredate desc rows 5 preceding) as "입사일_pre"

from emp

order by hiredate desc;

성명 급여 입사일 성명_pre 입사일_pre

ADAMS 1100 5/23/1987 ADAMS 5/23/1987

SCOTT 3000 4/19/1987 ADAMS 5/23/1987

2001-10-25

Creator: Chun,Cholchin 9

MILLER 1300 1/23/1982 ADAMS 5/23/1987

JAMES 950 12/3/1981 ADAMS 5/23/1987

FORD 3000 12/3/1981 ADAMS 5/23/1987

KING 5000 11/17/1981 ADAMS 5/23/1987

MARTIN 1250 9/28/1981 SCOTT 4/19/1987

TURNER 1500 9/8/1981 MILLER 1/23/1982

CLARK 2450 6/9/1981 JAMES 12/3/1981

BLAKE 2850 5/1/1981 FORD 12/3/1981

JONES 2975 4/2/1981 KING 11/17/1981

WARD 1250 2/22/1981 MARTIN 9/28/1981

ALLEN 1600 2/20/1981 TURNER 9/8/1981

SMITH 800 12/17/1980 CLARK 6/9/1981

3 SUMMARY

select hiredate as "입사일", ename as "성명", sal as "급여",

 avg(sal) over (order by hiredate asc rows 5 preceding) as "이전5개_평균",

 count(*) over (order by hiredate asc rows 5 preceding) as " bef_count",

 avg(sal) over (order by hiredate desc rows 5 preceding) as "이후5개_평균",

 count(*) over (order by hiredate desc rows 5 preceding) as " aft_count"

from emp

order by hiredate asc, ename asc;

입사일 성명 급여 이전5개_평균 bef_count 이후5개_평균 aft_count

12/17/1980 SMITH 800 800 1 1987.5 6

2/20/1981 ALLEN 1600 1200 2 2104.166667 6

2/22/1981 WARD 1250 1216.667 3 2045.833333 6

4/2/1981 JONES 2975 1656.25 4 2670.833333 6

5/1/1981 BLAKE 2850 1895 5 2675 6

6/9/1981 CLARK 2450 1987.5 6 2358.333333 6

9/8/1981 TURNER 1500 2104.167 6 2166.666667 6

9/28/1981 MARTIN 1250 2045.833 6 2416.666667 6

11/17/1981 KING 5000 2670.833 6 2391.666667 6

12/3/1981 FORD 3000 2675 6 1870 5

12/3/1981 JAMES 950 2358.333 6 1587.5 4

1/23/1982 MILLER 1300 2166.667 6 1800 3

4/19/1987 SCOTT 3000 2416.667 6 2050 2

5/23/1987 ADAMS 1100 2391.667 6 1100 1

2001-10-25

Creator: Chun,Cholchin 10

주의사항)

order by hiredate asc, empno asc; 처럼 SORT된 대상에 중복이 있다면 ANAL_FUNC 적용에

원치 않는 결과가 나올수 있으므로 절대 중복이 없게끔 하는게 좋다.

4 Spec Windows

select row_number() over (order by deptno asc,hiredate asc,empno asc)

 as "전체순서", --empno as " 사번",

 deptno as "부서", ename as "성명",

hiredate-100 as "startdate(-100)",hiredate as "입사일",

 hiredate+100 as "enddate(+100)",

 count(*) over (partition by deptno

 order by hiredate asc

 range 100 preceding) as "range(-100~current)cnt",

 count(*) over (partition by deptno

 order by hiredate asc

range between current row and 100 following)

as "range(current~+100)cnt",

 count(*) over (partition by deptno

 order by hiredate asc

range between 100 preceding and 100 following)

as "range(-100~+100)_cnt",

 count(*) over (partition by deptno

 order by hiredate asc

 rows 2 preceding) as "row2 pre_cnt"

from emp

order by deptno,hiredate,empno;

전체

순서부서 성명

Startdate

(-100) 입사일

Enddate

(+100)

Range

(-100~

current)cnt

Range

(current~

+100)cnt

Range

(-100~

+100)cnt

Row2

pre_cnt

1 10 CLARK 3/1/1981 6/9/1981 9/17/1981 1 1 1 1

2 10 KING 8/9/1981 11/17/1981 2/25/1982 1 2 2 2

3 10 MILLER 10/15/1981 1/23/1982 5/3/1982 2 1 2 3

4 20 SMITH 9/8/1980 12/17/1980 3/27/1981 1 1 1 1

5 20 JONES 12/23/1980 4/2/1981 7/11/1981 1 1 1 2

6 20 FORD 8/25/1981 12/3/1981 3/13/1982 1 1 1 3

7 20 SCOTT 1/9/1987 4/19/1987 7/28/1987 1 2 2 3

8 20 ADAMS 2/12/1987 5/23/1987 8/31/1987 2 1 2 3

9 30 ALLEN 11/12/1980 2/20/1981 5/31/1981 1 3 3 1

2001-10-25

Creator: Chun,Cholchin 11

10 30 WARD 11/14/1980 2/22/1981 6/2/1981 2 2 3 2

11 30 BLAKE 1/21/1981 5/1/1981 8/9/1981 3 1 3 3

12 30 TURNER 5/31/1981 9/8/1981 12/17/1981 1 3 3 3

13 30 MARTIN 6/20/1981 9/28/1981 1/6/1982 2 2 3 3

14 30 JAMES 8/25/1981 12/3/1981 3/13/1982 3 1 3 3

select empno as " 사번", ename as "성명",

 hiredate-100 as "startdate(-100)",

 hiredate as "입사일",

 hiredate+100 as "enddate(+100)",

 first_value(ename) over

 (order by hiredate asc

 range between 100 preceding and 100 following)

 as "range(-100~+100)_first",

 last_value(ename) over

 (order by hiredate asc

 range between 100 preceding and 100 following)

 as "range(-100~+100)_last"

from emp

order by hiredate,empno;

사번 성명 Startdate

(-100)

입사일 Enddate

(+100)

range(-100~+100)

first

range(-100~+100)

last

7369 SMITH 9/8/1980 12/17/1980 3/27/1981 SMITH WARD

7499 ALLEN 11/12/1980 2/20/1981 5/31/1981 SMITH BLAKE

7521 WARD 11/14/1980 2/22/1981 6/2/1981 SMITH BLAKE

7566 JONES 12/23/1980 4/2/1981 7/11/1981 ALLEN CLARK

7698 BLAKE 1/21/1981 5/1/1981 8/9/1981 ALLEN CLARK

7782 CLARK 3/1/1981 6/9/1981 9/17/1981 JONES TURNER

7844 TURNER 5/31/1981 9/8/1981 12/17/1981 CLARK JAMES

7654 MARTIN 6/20/1981 9/28/1981 1/6/1982 TURNER JAMES

7839 KING 8/9/1981 11/17/1981 2/25/1982 TURNER MILLER

7900 JAMES 8/25/1981 12/3/1981 3/13/1982 TURNER MILLER

7902 FORD 8/25/1981 12/3/1981 3/13/1982 TURNER MILLER

7934 MILLER 10/15/1981 1/23/1982 5/3/1982 KING MILLER

7788 SCOTT 1/9/1987 4/19/1987 7/28/1987 SCOTT ADAMS

7876 ADAMS 2/12/1987 5/23/1987 8/31/1987 SCOTT ADAMS

2001-10-25

Creator: Chun,Cholchin 12

3. Functions

26개의 함수중에는 집합함수(aggregate function) 처럼 avg , sum 등등 비슷한 것이 몇 개 있으나

그외 나머지는 새로운 이름과 새로운 기능을 제공한다. 아래는 간단히 사용가능한 함수의 목록과 그

함수의 목적을 짧게 설명코자 한다.

1.AVG(<distinct | all> expression)

Group and window의 내의 expression의 평균을 계산한다.

Distinct 는 중복을 제거한후에 그룹내에 값들의 평균을 찾는다.

SELECT deptno, ename, hiredate, sal,

 AVG(sal) OVER (PARTITION BY deptno ORDER BY hiredate

 ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING)

AS "자신과 전후rows의 평균"

FROM emp;

DEPTNO ENAME HIREDATE SAL 자신과 전후rows의 평균

10 CLARK 6/9/1981 2450 3725

10 KING 11/17/1981 5000 2916.666667

10 MILLER 1/23/1982 1300 3150

20 SMITH 12/17/1980 800 1887.5

20 JONES 4/2/1981 2975 2258.333333

20 FORD 12/3/1981 3000 2991.666667

20 SCOTT 4/19/1987 3000 2366.666667

20 ADAMS 5/23/1987 1100 2050

30 ALLEN 2/20/1981 1600 1425

30 WARD 2/22/1981 1250 1900

30 BLAKE 5/1/1981 2850 1866.666667

30 TURNER 9/8/1981 1500 1866.666667

30 MARTIN 9/28/1981 1250 1233.333333

30 JAMES 12/3/1981 950 1100

2.COUNT (<distinct> <*> <expression>)

그룹내에 출현을 카운트한다.

만약 * 이나 어떤 non-null 상수를 기입한다면, count는 모든 rows를 카운트한다.

만약 expression을 기입한다면 count는 expression의 not-null 평가된 것만 카운트한다.

그룹내에서 중복을 제거한후에 rows의 출현을 카운트할려면 DISTINCT를 사용해야 한다.

SELECT ename,empno, sal,

2001-10-25

Creator: Chun,Cholchin 13

 COUNT(*) OVER (ORDER BY sal asc

RANGE BETWEEN 50 PRECEDING AND 150 FOLLOWING)

AS "이전50-이후150간격"

FROM emp;

ENAME EMPNO SAL 이전50-이후150간격

SMITH 7369 800 2

JAMES 7900 950 2

ADAMS 7876 1100 3

WARD 7521 1250 3

MARTIN 7654 1250 3

MILLER 7934 1300 3

TURNER 7844 1500 2

ALLEN 7499 1600 1

CLARK 7782 2450 1

BLAKE 7698 2850 4

JONES 7566 2975 3

SCOTT 7788 3000 3

FORD 7902 3000 3

KING 7839 5000 1

3.MAX (expression)

그룹의 윈도우 내에서 expression의 최대값을 리턴한다.

SELECT deptno,empno, ename, sal,

 MIN(sal) OVER (PARTITION BY deptno ORDER BY empno asc) AS dept_mix,

 MAX(sal) OVER (PARTITION BY deptno ORDER BY empno asc) AS dept_max

FROM emp;

DEPTNO EMPNO ENAME SAL DEPT_MIX DEPT_MAX

10 7782 CLARK 2450 2450 5000

10 7839 KING 5000 2450 5000

10 7934 MILLER 1300 1300 5000

20 7369 SMITH 800 800 3000

20 7566 JONES 2975 800 3000

20 7788 SCOTT 3000 800 3000

20 7876 ADAMS 1100 800 3000

2001-10-25

Creator: Chun,Cholchin 14

20 7902 FORD 3000 800 3000

30 7499 ALLEN 1600 1600 2850

30 7521 WARD 1250 1250 2850

30 7654 MARTIN 1250 1250 2850

30 7698 BLAKE 2850 1250 2850

30 7844 TURNER 1500 1250 2850

30 7900 JAMES 950 950 2850

4.MIN (expression)

그룹의 윈도우 내에서 expression의 최소값을 리턴한다.

SELECT deptno, empno, ename, hiredate, sal,

 MIN(sal) OVER(PARTITION BY deptno ORDER BY hiredate

 RANGE UNBOUNDED PRECEDING) as "이동_최소급여액"

FROM emp;

DEPTNO EMPNO ENAME HIREDATE SAL 이동_최소급여액

10 7782 CLARK 6/9/1981 2450 2450

10 7839 KING 11/17/1981 5000 2450

10 7934 MILLER 1/23/1982 1300 1300

20 7369 SMITH 12/17/1980 800 800

20 7566 JONES 4/2/1981 2975 800

20 7902 FORD 12/3/1981 3000 800

20 7788 SCOTT 4/19/1987 3000 800

20 7876 ADAMS 5/23/1987 1100 800

30 7499 ALLEN 2/20/1981 1600 1600

30 7521 WARD 2/22/1981 1250 1250

30 7698 BLAKE 5/1/1981 2850 1250

30 7844 TURNER 9/8/1981 1500 1250

30 7654 MARTIN 9/28/1981 1250 1250

30 7900 JAMES 12/3/1981 950 950

5.RATIO_TO_REPORT (expression)

Expression 의 값 / 그룹의 SUM(expression) 의 값을 계산한다. 이것은 현재 row의 값이 전체에서

차지하는 퍼센트를 보여준다.

2001-10-25

Creator: Chun,Cholchin 15

SELECT ename, sal,

 RATIO_TO_REPORT (sal) OVER () AS "RATIO_TO_REPORT (sal)"

FROM emp;

ENAME SAL RATIO_TO_REPORT (sal)

SMITH 800 0.027562446

ALLEN 1600 0.055124892

WARD 1250 0.043066322

JONES 2975 0.102497847

MARTIN 1250 0.043066322

BLAKE 2850 0.098191214

CLARK 2450 0.084409991

SCOTT 3000 0.103359173

KING 5000 0.172265289

TURNER 1500 0.051679587

ADAMS 1100 0.037898363

JAMES 950 0.032730405

FORD 3000 0.103359173

MILLER 1300 0.044788975

6.SUM (expression)

그룹내에서 expression의 누적합계를 계산하여 준다.

SELECT mgr, ename, sal,

SUM(sal) OVER (PARTITION BY mgr ORDER BY sal

 RANGE UNBOUNDED PRECEDING) AS l_csum

FROM emp;

위에서 ORDER BY sal ,ename asc 를 추가하면 아래와는 다른 결과가 전시될것이다.

상기 했듯이 order by를 어떻게 하는냐에 따라 결과는 판이하게 틀려질것이다.

MGR ENAME SAL L_CSUM

7566 SCOTT 3000 6000

7566 FORD 3000 6000

7698 JAMES 950 950

7698 WARD 1250 3450

7698 MARTIN 1250 3450

7698 TURNER 1500 4950

2001-10-25

Creator: Chun,Cholchin 16

7698 ALLEN 1600 6550

7782 MILLER 1300 1300

7788 ADAMS 1100 1100

7839 CLARK 2450 2450

7839 BLAKE 2850 5300

7839 JONES 2975 8275

7902 SMITH 800 800

 KING 5000 5000

7.FIRST_VALUE(expression)

그룹내에서 처음 값(FIRST VALUE)를 리턴한다.

SELECT deptno, ename, sal,

 FIRST_VALUE(ename) OVER

 (ORDER BY deptno asc,sal asc, ename asc ROWS UNBOUNDED PRECEDING)

 AS FIRST_VALUE,

 LAST_VALUE(ename) OVER

 (ORDER BY deptno asc,sal asc, ename asc ROWS BETWEEN CURRENT ROW AND UNBOUNDED

FOLLOWING) AS LAST_VALUE

FROM emp

ORDER BY deptno asc, sal asc,ename asc

DEPTNO ENAME SAL FIRST_VALUE LAST_VALUE

10 CLARK 2450 MILLER BLAKE

10 KING 5000 MILLER BLAKE

10 MILLER 1300 MILLER BLAKE

20 ADAMS 1100 MILLER BLAKE

20 FORD 3000 MILLER BLAKE

20 JONES 2975 MILLER BLAKE

20 SCOTT 3000 MILLER BLAKE

20 SMITH 800 MILLER BLAKE

30 ALLEN 1600 MILLER BLAKE

30 BLAKE 2850 MILLER BLAKE

30 JAMES 950 MILLER BLAKE

30 MARTIN 1250 MILLER BLAKE

30 TURNER 1500 MILLER BLAKE

30 WARD 1250 MILLER BLAKE

2001-10-25

Creator: Chun,Cholchin 17

8. LAST_VALUE(expression)

그룹내에서 마지막 값(LAST VALUE)를 리턴한다.

9. LAG (expression, <offset>, <default>)

Self-join 없이 resultset 내에서 다른 rows에 대한 접근을 가능하게 해준다.

주어진 그룹에서 current row의 이전에 오는 rows을 reference한다.

즉 현재 row을 따라가면서 그룹로부터 이전 rows를 select 을 할수 있게 한다는 것이다.

이후 row는 LEAD를 보아야 한다.

Offset : 양의 정수이고 default는 1 이다.

Default: 만약 index가 window 범위 밖으로 나갈시에 리턴되는 값을 말한다. 보통 그룹의 첫번째

row를 리턴 할것이다. 그 칼럼의 데이터형과 같은 디폴트값을 기입해야 한다. 특히 날자라면

올바른 날자를 기입해야 한다.㈜

SELECT ename, hiredate, sal,

 LAG(sal, 1, 0) OVER (ORDER BY hiredate) as prev_sal

FROM emp

WHERE job = 'SALESMAN';

ENAME HIREDATE SAL PREV_SAL

ALLEN 2/20/1981 1600 0

WARD 2/22/1981 1250 1600

TURNER 9/8/1981 1500 1250

MARTIN 9/28/1981 1250 1500

10. LEAD (expression, <offset>, <default>)

LAG와 반대이다. 현재 row 이후에 오는 row에 접근하게 해준다.

Offset : 양의 정수이고 default는 1 이다.

Default: 만약 index가 window 범위 밖으로 나갈시에 리턴되는 값을 말한다.

예문)

SELECT ename, hiredate,

 LEAD(hiredate, 1,2000-01-01) OVER (ORDER BY hiredate) AS next_hire_date

FROM emp;

ENAME HIREDATE NEXT_HIRE_DATE

SMITH 12/17/1980 2/20/1981

2001-10-25

Creator: Chun,Cholchin 18

ALLEN 2/20/1981 2/22/1981

WARD 2/22/1981 4/2/1981

JONES 4/2/1981 5/1/1981

BLAKE 5/1/1981 6/9/1981

CLARK 6/9/1981 9/8/1981

TURNER 9/8/1981 9/28/1981

MARTIN 9/28/1981 11/17/1981

KING 11/17/1981 12/3/1981

JAMES 12/3/1981 12/3/1981

FORD 12/3/1981 1/23/1982

MILLER 1/23/1982 4/19/1987

SCOTT 4/19/1987 5/23/1987

ADAMS 5/23/1987 1/1/2000

11. NTILE (expression)

expression만큼 전체 레코드를 균등분할 한다.

SELECT ename, sal, NTILE(4) OVER (ORDER BY sal DESC) AS quartile

FROM emp;

ENAME SAL QUARTILE

KING 5000 1

SCOTT 3000 1

FORD 3000 1

JONES 2975 1

BLAKE 2850 2

CLARK 2450 2

ALLEN 1600 2

TURNER 1500 2

MILLER 1300 3

WARD 1250 3

MARTIN 1250 3

ADAMS 1100 4

JAMES 950 4

SMITH 800 4

SELECT ename, sal, NTILE(10) OVER (ORDER BY sal DESC) AS quartile

FROM emp;

2001-10-25

Creator: Chun,Cholchin 19

ENAME SAL QUARTILE

KING 5000 1

SCOTT 3000 1

FORD 3000 2

JONES 2975 2

BLAKE 2850 3

CLARK 2450 3

ALLEN 1600 4

TURNER 1500 4

MILLER 1300 5

WARD 1250 6

MARTIN 1250 7

ADAMS 1100 8

JAMES 950 9

SMITH 800 10

SELECT ename, sal, NTILE(100) OVER (ORDER BY sal DESC) AS quartile

FROM emp;

ENAME SAL QUARTILE

KING 5000 1

SCOTT 3000 2

FORD 3000 3

JONES 2975 4

BLAKE 2850 5

CLARK 2450 6

ALLEN 1600 7

TURNER 1500 8

MILLER 1300 9

WARD 1250 10

MARTIN 1250 11

ADAMS 1100 12

JAMES 950 13

SMITH 800 14

12. RANK()

2001-10-25

Creator: Chun,Cholchin 20

ORDER BY 절의 expression의 값을 베이스로 하여 다른 rows을 조망해서 각 row의 상대적인 순위를

계산한다. 그룹내에 자료는 order by 절에 의해 sort되엇고, 각 row는 1로부터 시작하여 계속 순위를

숫자순위를 assign한다.

동일한 값을 지닌 rows는 같은 순위를 받는다. 만약 2개의 row가 같은 순위를 받는다면, 그 다음

순위는 Skip된다.

만약 2개의 row가 1위이라면 그룹에서 다음 row는 2위가 아니라 3위를 assign한다.

이것은 순위를 Skip하지 않는 DENSE_RANK와 반대된다.

SELECT deptno, ename, sal, comm,

 RANK() OVER (PARTITION BY deptno ORDER BY sal DESC, comm) as rk,

 DENSE_RANK() OVER (PARTITION BY deptno ORDER BY sal DESC, comm) as drk

FROM emp;

DEPTNO ENAME SAL COMM RK DRK

10 KING 5000 1 1

10 CLARK 2450 2 2

10 MILLER 1300 3 3

20 SCOTT 3000 1 1

20 FORD 3000 1 1

20 JONES 2975 3 2

20 ADAMS 1100 4 3

20 SMITH 800 5 4

30 BLAKE 2850 1 1

30 ALLEN 1600 300 2 2

30 TURNER 1500 0 3 3

30 WARD 1250 500 4 4

30 MARTIN 1250 1400 5 5

30 JAMES 950 6 6

13. DENSE_RANK()

ORDER BY 절의 expression의 값을 베이스로 하여 다른 rows을 조망해서 각 row의 상대적인 순위를

계산한다. 그룹내에 자료는 order by 절에 의해 sort되엇고, 각 row는 1로부터 시작하여 계속 순위를

숫자순위를 assign한다.

ORDER BY 절의 expression 의 값이 변화될 때 마다 매번 순위는 증가한다.

같은 값의 rows의 순위는 같은 순위를 받는다. 그러나 이것은 어떠한 GAPS이 없이 순위가 채워진다.

이것은 RANK () 와 비교된다.

14. CUME_DIST()

2001-10-25

Creator: Chun,Cholchin 21

SELECT job, ename, sal, CUME_DIST()

 OVER (PARTITION BY job ORDER BY sal) AS cume_dist

 FROM emp;

JOB ENAME SAL 작자삽입 CUME_DIST

ANALYST SCOTT 3000 1/1 1

ANALYST FORD 3000 1/1 1

CLERK SMITH 800 1/4 0.25

CLERK JAMES 950 2/4 0.5

CLERK ADAMS 1100 3/4 0.75

CLERK MILLER 1300 4/4 1

MANAGER CLARK 2450 1/3 0.33

MANAGER BLAKE 2850 2/3 0.66

MANAGER JONES 2975 3/3 1

PRESIDENT KING 5000 1/1 1

SALESMAN WARD 1250 2/4 0.5

SALESMAN MARTIN 1250 2/4 0.5

SALESMAN TURNER 1500 3/4 0.75

SALESMAN ALLEN 1600 4/4 1

15. PERCENT_RANK()

CUME_DIST와 비슷하다.

항상 값이 0에서 1사이로 리턴한다.

그룹내에 주어진 row을 위해

SELECT deptno, ename, sal,

PERCENT_RANK() OVER (PARTITION BY deptno ORDER BY sal DESC) AS pr

FROM emp;

DEPTNO ENAME SAL PR

10 KING 5000 0

10 CLARK 2450 0.5

10 MILLER 1300 1

20 SCOTT 3000 0

20 FORD 3000 0

20 JONES 2975 0.5

2001-10-25

Creator: Chun,Cholchin 22

20 ADAMS 1100 0.75

20 SMITH 800 1

30 BLAKE 2850 0

30 ALLEN 1600 0.2

30 TURNER 1500 0.4

30 WARD 1250 0.6

30 MARTIN 1250 0.6

30 JAMES 950 1

통계함수

16. CORR (expression, expression) : expression 한쌍에 상관계수인 숫자를 리턴한다.

17. COVAR_POP (expression, expression) : expression 한쌍에 모 공분산인 숫자를 리턴한다.

18. COVAR_SAMP (expression, expression) : expression 한쌍에 표본 공분산 숫자를 리턴한다.

19. STDDEV (expression) : 그룹을 조망하여 CURRENT ROW의 표준편차를 리턴

20. STDDEV_POP (expression) : 모표준편차를 계산하는 것으로 모분산의 평방근을 리턴한다.

 즉, VAR_POP의 평방근의 값이랑 같은 값이다.

21. STDDEV_SAMP (expression) : 누적 표본표준편차을 계산하는 것으로 표본분산의 평방근을

리턴한다. 즉, VAR_SAMP의 평방근의 값이랑 같은 값이다.

22. VAR_POP (expression) : NULL을 무시하고 NOT-NULL 숫자셋의 모분산

23. VAR_SAMP (expression) : NULL을 무시하고 NOT-NULL 숫자셋의 표본분산

24. VARIANCE (expression) : expression의 분산

 만약 expression의 row의 개수가 1 이면 0

 만약 expression의 row의 개수 > 1 이면 VAR_SAMP

25. REGR_ XXXXXXX (expression, expression) : 선형 회귀함수이다. 9개의 다른함수가 가능하다.

덧붙이는 말 : 준용아 고맙다 !

